Abstract
Binomial ideals are special polynomial ideals with many algorithmically and theoretically nice properties. We discuss the problem of deciding if a given polynomial ideal is binomial. While the methods are general, our main motivation and source of examples is the simplification of steady state equations of chemical reaction networks. For homogeneous ideals we give an efficient, Gröbner-free algorithm for binomiality detection, based on linear algebra only. On inhomogeneous input the algorithm can only give a sufficient condition for binomiality. As a remedy we construct a heuristic toolbox that can lead to simplifications even if the given ideal is not binomial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.