Abstract

Most of the existing anomaly detection methods are based on a single and fine granularity input pattern, which is susceptible to noisy data and inefficient for detecting anomalies. Granular-ball computing, as a novel multi-granularity representation and computation method, can effectively compensate for these shortcomings. We utilize the fuzzy rough sets to mine the potential uncertainty information in the data efficiently. The combination of granular-ball computing and fuzzy rough sets takes into account the benefits of both methods, providing great application and research value. However, this novel combination still needs to be explored, especially for unsupervised anomaly detection. In this study, we first propose the granular-ball fuzzy rough set model, and the relevant definitions in the model are given. Subsequently, we pioneeringly present an unsupervised anomaly detection method based on granular-ball fuzzy rough sets called granular-ball fuzzy rough sets-based anomaly detection (GBFRD). Our method introduces the granular-ball fuzzy rough granules-based outlier factor to characterize the outlier degree of an object effectively. The experimental results demonstrate that GBFRD exhibits superior performance compared to the state-of-the-art methods. The code is publicly available at https://github.com/Mxeron/GBFRD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.