Abstract
<p>This paper presents a novel deep learning-based approach for anomaly detection in surveillance films. A deep network that has been trained to recognize objects and human activity in movies forms the foundation of the suggested approach. In order to detect anomalies in surveillance films, the proposed method combines the strengths of 3D-convolutional neural network (3DCNN) and convolutional long short-term memory (ConvLSTM). From the video frames, the 3DCNN is utilized to extract spatiotemporal features,while ConvLSTM is employed to record temporal relationships between frames. The technique was evaluated on five large-scale datasets from the actual world (UCFCrime, XDViolence, UBIFights, CCTVFights, UCF101) that had both indoor and outdoor video clips as well as synthetic datasets with a range of object shapes, sizes, and behaviors. The results further demonstrate that combining 3DCNN with ConvLSTM can increase precision and reduce false positives, achieving a high accuracy and area under the receiver operating characteristic-area under the curve (ROC-AUC) in both indoor and outdoor scenarios when compared to cuttingedge techniques mentioned in the comparison.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.