Abstract
AbstractSeparation or “perfect prediction” is a common problem in discrete choice models that, in practice, leads to inflated point estimates and standard errors. Standard statistical packages do not provide clear advice on how to correct these problems. Furthermore, separation can go completely undiagnosed in fitting advanced models that optimize a user-supplied log-likelihood rather than relying on pre-programmed estimation procedures. In this paper, we both describe the problems that separation can cause and address the issue of detecting it in empirical models of strategic interaction. We then consider several solutions based on penalized maximum likelihood estimation. Using Monte Carlo experiments and a replication study, we demonstrate that when separation is detected in the data, the penalized methods we consider are superior to ordinary maximum likelihood estimators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.