Abstract
The detection and classification of nuclei play an important role in the histopathological analysis. It aims to find out the distribution of nuclei in the histopathology images for the next step of analysis and research. However, it is very challenging to detect and localize nuclei in histopathology images because the size of nuclei accounts for only a few pixels in images, making it difficult to be detected. Most automatic detection machine learning algorithms use patches, which are small pieces of images including a single cell, as training data, and then apply a sliding window strategy to detect nuclei on histopathology images. These methods require preprocessing of data set, which is a very tedious work, and it is also difficult to localize the detected results on original images. Fully convolutional network-based deep learning methods are able to take images as raw inputs, and output results of corresponding size, which makes it well suited for nuclei detection and classification task. In this study, we propose a novel multi-scale fully convolution network, named Cell Fully Convolutional Network (CFCN), with dilated convolution for fine-grained nuclei classification and localization in histology images. We trained CFCN in a typical histology image data set, and the experimental results show that CFCN outperforms the other state-of-the-art nuclei classification models, and the F1 score reaches 0.750.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of computational biology : a journal of computational molecular cell biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.