Abstract
We propose a general framework for detecting and characterizing phase synchronization from noisy, nonstationary time series. For detection, we propose to use the average phase-synchronization time and show that it is extremely sensitive to parameter changes near the onset of phase synchronization. To characterize the degree of temporal phase synchronization, we suggest to monitor the evolution of phase diffusion from a moving time window and argue that this measure is practically useful as it can be enhanced by increasing the size of the window. While desynchronization events can be caused by either a lack of sufficient deterministic coupling or noise, we demonstrate that the time scales associated with the two mechanisms are quite different. In particular, noise-induced desynchronization events tend to occur on much shorter time scales. This allows for the effect of noise on phase synchronization to be corrected in a practically doable manner. We perform a control study to substantiate these findings by constructing and investigating a prototype model of nonstationary dynamical system that consists of coupled chaotic oscillators with time-varying coupling parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.