Abstract

A growing body of evidence shows that collaborative teams and communities tend to produce the highest-impact scientific work. This paper proposes a new method to (1) Identify collaborative communities in longitudinal scientific networks, and (2) Evaluate the impact of specific research institutes, services or policies on the interdisciplinary collaboration between these communities. First, we apply community-detection algorithms to cross-sectional scientific collaboration networks and analyze different types of co-membership in the resulting subgroups over time. This analysis summarizes large amounts of longitudinal network data to extract sets of research communities whose members have consistently collaborated or shared collaborators over time. Second, we construct networks of cross-community interactions and estimate Exponential Random Graph Models to predict the formation of interdisciplinary collaborations between different communities. The method is applied to longitudinal data on publication and grant collaborations at the University of Florida. Results show that similar institutional affiliation, spatial proximity, transitivity effects, and use of the same research services predict higher degree of interdisciplinary collaboration between research communities. Our application also illustrates how the identification of research communities in longitudinal data and the analysis of cross-community network formation can be used to measure the growth of interdisciplinary team science at a research university, and to evaluate its association with research policies, services or institutes.

Highlights

  • The recent increase in collaborative research [1,2] has led to the development of a new field, the Science of Team Science (SciTS)

  • Consistent with this framework, this paper studies the formation of communities and interdisciplinary collaborations by analyzing longitudinal collaboration networks

  • The analysis focuses on a specific research institute, namely the University of Florida Clinical and Translational Science Institute (CTSI) in the UF College of Medicine, funded in part by a Clinical and Translational Science Award (CTSA) by the National Institutes of Health (NIH) National Center for Advancing Translational Sciences [10]

Read more

Summary

Introduction

The recent increase in collaborative research [1,2] has led to the development of a new field, the Science of Team Science (SciTS). This field analyzes scientific collaboration, team effectiveness, and the mechanisms of team assembly using a variety of methods including network analysis [3,4,5,6,7,8,9]. Consistent with this framework, this paper studies the formation of communities and interdisciplinary collaborations by analyzing longitudinal collaboration networks.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call