Abstract

ABSTRACT We present a method for automatized detection and analysis of quasi-periodic lineament structures from images at pixel precision. The method exploits properties of the images’ frequency domain found by using the Fourier transform. We developed this method with the goal of detecting lineament structures in an image of the Hathor cliff of comet 67P/Churyumov–Gerasimenko, which are caused by layerings and furrows in the nucleus material. Using our method, we determined the orientation and wavelength range of these structures. The detected layering edges have similar orientations and spatial separations of 9–20 m, and are ubiquitous throughout the image. We suggest that the layerings are a global feature of the comet nucleus that provide information about formation and evolution of comet 67P. The furrows are non-uniformly distributed throughout the image. Their orientation is broadly parallel to the direction of the local gravity vector at the Hathor cliff, with spacings similar to those of the layering structures. The furrows are interpreted as signatures of local down-slope movement of cliff material. We demonstrate that the developed method is broadly applicable to the detection and analysis of various kinds of quasi-periodic structures like geological layering, folding and faulting, and texture analysis in general. In order to facilitate the application of our method, this paper is accompanied by a demo program written in matlab.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.