Abstract
• Nonuniform spatial sampling and polynomial misfits introduce aliasing and artifacts in ionospheric perturbations obtained using GPS. • Spatio-Periodic Leveling Algorithm (SPLA) is efficient in removing such aliasing and artifacts. • SPLA detects 50% more perturbations compare to conventional methods and increases SNR up to 149%. • SPLA efficiently detects perturbations at low elevations and removes the need of elevation cut-off. Ionospheric perturbations induced by tsunamis and earthquakes can be used for tsunami early warning and remote sensing of earthquakes, provided the perturbations are characterized properly to distinguish them from the ones caused by other sources. The ionospheric perturbations are increasingly being obtained from Global Positioning System (GPS) based Total Electron Content (TEC) measurements sampled at uniform time intervals. However, the sampling is not uniform in space. The nonuniform spatial sampling along the GPS satellite tracks introduces aliasing if it is not accounted while computing the ionospheric perturbations. All the methods hitherto used to detect the co-seismic and tsunamigenic ionospheric perturbations did not account the nonuniform spatial sampling while computing these perturbations. In addition, the residual approach used to obtain the perturbations by detrending the TEC time series using high-order polynomial fit introduces artifacts. These aliasing and artifacts corrupt amplitude, Signal-to-Noise Ratio (SNR), phase, and frequency of ionospheric perturbations which are vital to distinguish the perturbations induced by tsunamis and earthquakes from the rest. We show that Spatio-Periodic Leveling Algorithm (SPLA) successfully removes such aliasing and artifacts. The efficiency of SPLA in removing the aliases and artifacts is validated under two simulated scenarios, and using GPS observations carried out during two natural disasters – the 2004 Indian Ocean tsunami and the 2015 Nepal-Gorkha earthquake. We, further, studied the severity of aliasing and artifacts on co-seismic and tsunamigenic perturbations by analyzing its characteristics employing SNR, spatiotemporal, and wavelet analyses. The results reveal that removal of aliasing and artifacts using SPLA i) increases the SNR up to ∼149% compared to the residual method and ∼39% compared to the differential method, ii) distinctly resolves signals from sharp static variations, and iii) detects 50% more co-seismic ionospheric perturbations and 25% more tsunami-induced ionospheric perturbations in the two events studied. Cross-correlation of the perturbation time series obtained using the residual method and SPLA reveals that aliasing and artifacts shift the time of occurrence by −7.64 minutes to +4.21 minutes. Further, the results show that the SPLA efficiently detects the ionospheric perturbations at low elevation angles, thereby removes the need of applying elevation cut-off and increases the area of ionospheric exploration of a GPS receiver.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.