Abstract
AbstractA novel method for detection of abnormal conditions during plant operation uses wavelet‐domain hidden Markov models (HMMs) as a powerful tool for statistical modeling of wavelet coefficients. By capturing the interdependence of wavelet coefficients of a measured process variable, a classification strategy is developed that can detect abnormal conditions and classify the process behavior on‐line. The method is extended to include multiple measured variables in detection and classification. Two case studies illustrate the potential of this method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.