Abstract
This paper deals with the study of limit cycles that appear in a class of planar slow-fast systems, near a canard'' limit periodic set of FSTS-type. Limit periodic sets of FSTS-type are closed orbits, composed of a Fast branch, an attracting Slow branch, a Turning point, and a repelling Slow branch. Techniques to bound the number of limit cycles near a FSTS-l.p.s. are based on the study of the so-called slow divergence integral, calculated along the slow branches. In this paper, we extend the technique to the case where the slow dynamics has singularities of any (finite) order that accumulate to the turning point, and in which case the slow divergence integral becomes unbounded. Bounds on the number of limit cycles near the FSTS-l.p.s. are derived by examining appropriate derivatives of the slow divergence integral.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.