Abstract

This paper describes a method for recognizing partially occluded objects for bin-picking tasks using eigenspace analysis, referred to as the eigen window method, that stores multiple partial appearances of an object in an eigenspace. Such partial appearances require a large amount of memory space. Three measurements, detectability, uniqueness, and reliability, on windows are developed to eliminate redundant windows and thereby reduce memory requirements. Using a pose clustering technique, the method determines the pose of an object and the object type itself. We have implemented the method and verified its validity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.