Abstract

Microscopic fluctuations inherent to the fuzziness of spacetime at the Planck scale might accumulate in wavefronts propagating a cosmological distance and lead to noticeable blurring in an image of a pointlike source. Distant quasars viewed in the optical and ultraviolet with Hubble Space Telescope (HST) may show this weakly, and if real suggests a stronger effect should be seen for gamma-ray bursts (GRBs) in X-rays and γ-rays. Those telescopes, however, operate far from their diffraction limits. A description of how Planck-scale-induced blurring could be sensed at high energy, including with cosmic rays, while still agreeing with the HST results is discussed. It predicts dilated apparent source size and inflated uncertainties in positional centroids, effectively a threshold angular accuracy restricting knowledge of source location on the sky. These outcomes are found to be consistent with an analysis of the 10 highest-redshift GRB detections reported for the Fermi satellite. Confusion with photon cascade and scattering phenomena is also possible; prospects for a definitive multiwavelength measurement are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call