Abstract
Exomoons are natural satellites of exoplanets. Nowadays, none has been confirmed. However, a number of detection techniques have been proposed, including Transit Timing Variations (TTV) and Transit Duration Variations (TDV) techniques. From a recent study, fitting observed transit with the traditional photocentric fitting model shows unique features around the primary and secondary exomoon transits in TDV and transit depth signals, which might reduce the detectability. The aim of this work is to retrieve the variation of TTV, TDV and transit depth signals of exomoon systems with the photocentric fitting model. One year star-planet-moon transit light curves are simulated with LUNA algorithm and fit with TransitFit. The results show that neglecting the TDV and transit depth data with phase around exomoon’s primary and secondary transits improve the exomoon detectability by a factor of ten and the systems with large moon orbital semi-major axis with nearly edge-on orbit around low mass stars can be detected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.