Abstract

Given the considerable percentage of stars that are members of binaries or stellar multiples in the Solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the alpha Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones, especially in close S-Type binary systems, can be rather inaccurate. Recent progress in this field, however, allows to identify regions around the star permitting permanent habitability. While the discovery of alpha Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogues in habitable zones. We provide analytical expressions for the maximum and RMS values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent habitable zones around both stars of the alpha Centauri system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.