Abstract
Abstract The James Webb Space Telescope (JWST) may be capable of finding biogenic gases in the atmospheres of habitable exoplanets around low-mass stars. Considerable attention has been given to the detectability of biogenic oxygen, which could be found using an ozone proxy, but ozone detection with JWST will be extremely challenging, even for the most favorable targets. Here, we investigate the detectability of biosignatures in anoxic atmospheres analogous to those that likely existed on the early Earth. Arguably, such anoxic biosignatures could be more prevalent than oxygen biosignatures if life exists elsewhere. Specifically, we simulate JWST retrievals of TRAPPIST-1e to determine whether the methane plus carbon dioxide disequilibrium biosignature pair is detectable in transit transmission. We find that ∼10 transits using the Near InfraRed Spectrograph prism instrument may be sufficient to detect carbon dioxide and constrain methane abundances sufficiently well to rule out known, nonbiological CH4 production scenarios to ∼90% confidence. Furthermore, it might be possible to put an upper limit on carbon monoxide abundances that would help rule out nonbiological methane-production scenarios, assuming the surface biosphere would efficiently draw down atmospheric CO. Our results are relatively insensitive to high-altitude clouds and instrument noise floor assumptions, although stellar heterogeneity and variability may present challenges.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.