Abstract

The objective of this study was to determinate grain unique protein inherent molecular structure that are related physiochemical and nutrient profiles in CDC developed oat varieties [CDC Nasser (Feed Type) and CDC Seabiscuit (Milling Type)] grown in cool climate condition in western Canada in comparison with conventional barley variety of CDC Meredith as a control using advanced molecular spectroscopy. Multivariate analyses, including an agglomerative hierarchical cluster analysis (CLA) and principal component analysis (PCA), were performed to identify protein molecular structural differences among the grains. The results revealed that CDC Seabiscuit contained greater (P < 0.05) protein structural Amide I and II than CDC Nasser and CDC Meredith, while the greater (P < 0.005) structural Amide I to II area and height ratios was detected in CDC Meredith. New oat grains had greater (P < 0.05) β-sheet height than barley grains, however, there was no difference in α-helix to β-sheet ratio values among the varieties. In conclusion, CDC Nasser and CDC Meredith had no difference in protein molecular structural features, while CDC Seabiscuit contains different protein structural characteristics as compared to CDC Meredith grain. The molecular structure features are highly associated with physiochemical and nutrient profiles in grains, which indicate that it also affect nutrient utilization and availability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.