Abstract

The original contribution of the research is the developed monitoring system that can detect tool breakage in real time by using a combination of neural decision system and ANFIS tool wear predictor. The ANFIS method uses the relationship between flank wear and the resultant cutting force to estimate tool wear. Therefore, the ANFIS method is used to extract the features of tool states from cutting force signals. A neural network is used in tool condition monitoring system (TCM) as a decision making system to discriminate different malfunction states from measured signal. A series of experiments were conducted to determine the relationship between flank wear and cutting force as well as cutting parameters. The forces were measured using a piezoelectric dynamometer and data acquisition system. Simultaneously flank wear at the cutting edge was monitored by using a tool maker’s microscope. The experimental force and wear data were utilized to train the developed simulation environment based on ANFIS modeling. By developed tool condition monitoring system (TCM) the machining process can be on-line monitored and stopped for tool change based on a pre-set tool-wear limit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.