Abstract
With the increasing demand to integrate unmanned aircraft systems (UAS) into the National Airspace System (NAS), new procedures and technologies are necessary to ensure safe airspace operations and minimize the impact of UAS on current airspace users. Currently, small UAS face limitations on their use in civil airspace because they lack the ability to detect and avoid other aircraft. This article presents a framework that consists of an Automatic Dependent Surveillance-Broadcast (ADS-B)-based sensor, track estimator, conflict/collision detection, and resolution that mitigates collision risk. ADS-B offers long-range, omni-directional intruder detection with comparatively few size, weight, power, and cost demands. The proposed conflict/collision detection and planning algorithms for conflict/collision resolution are designed in the local level frame, which is the unrolled, unpitched body frame where the ownship is stationary at the center of the map. The path planning method is designed to be multi-resolutional at increasing distance from the ownship to account for both self-separation and collision avoidance thresholds. We demonstrate and validate this approach using simulated ADS-B measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.