Abstract
The people counting systems are widely used in surveillance applications. This article presents an application for counting people through a stereovision system. This system obtains counting rates of people moving through the counting area, distinguishing between input and output. To achieve this aim is required two basic steps: detection and tracking. The detection step is based on correlation through a pre-processed image with various circular patterns in order to search people's heads, filtering these detections by stereovision depending on the height. The people tracking is carried out through a multiple hypothesis algorithm based on the Kalman filter. Finally, people counting is done according to the trajectory followed by the person. To validate the algorithm have been used several real videos taken from different transit areas inside buildings, reaching rates ranging between 87% and 98% accuracy depending on the number of people crossing the counting zone simultaneously. In these videos occur several adverse situations, such as occlusions, people in groups in different directions, lighting changes, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Revista Iberoamericana de Automática e Informática Industrial RIAI
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.