Abstract

ObjectiveTo assess whether the methodological changes of this new algorithm improves the results of a previously presented strategy. MethodsWe enhance the image and filter out the green channel of the digital color retinography. Multitolerance thresholding was applied to obtain candidate points and make a seed growing region by varying intensities. We took 15 characteristics from each region to train a Fuzzy Artmap neural network using 42 retinal photographs. This network was then applied in the study of 11 good quality retinal photographs included in the diabetic retinopathy early detection screening program, with initial stages of retinopathy, obtained with the Topcon NW200 non-mydriatic retinal camera. ResultsTwo experienced ophthalmologists detected 52 microaneurysms in 11 images. The algorithm detected 39 microaneurysms and 3,752 more regions, confirming 38 microaneurysm and 135 false positives. The sensitivity is improved compared to the previous algorithm, from 60.53 to 73.08%. False positives have dropped from 41.8 to 12.27 per image. ConclusionsThe new algorithm is better than the previous one, but there is still room for improvement, especially in the initial determination of seeds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.