7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1016/j.ijrefrig.2004.09.014
Copy DOIPublication Date: Jan 8, 2005 | |
Citations: 65 |
The aim of this paper is the detailed analysis of different well-known thermodynamic efficiencies usually used to characterize hermetic compressors. Attention is focussed on the volumetric efficiency, the isentropic efficiency, and the combined mechanical–electrical efficiency. A procedure is presented to detach these efficiencies into their main components (physical sub-processes) to get deeper insight on the overall behavior. The volumetric efficiency is split into partial efficiencies related to pressure drop and heat transfer effects, supercharging effects, superdischarging effects, leakages, etc. The isentropic efficiency is detached using two different points of view: the work associated to the individual sub-processes (compression, discharge, expansion, suction), and the work associated to the underpressures, overpressures, and between the inlet and outlet mean compressor pressures. Finally, the combined mechanical–electrical efficiency is related to the heat transfer losses/gains, and to the exergy transfers and exergy destroyed. Even though some of the concepts introduced in the paper can be applied to different kinds of compressors, the discussion is specially focussed on hermetic reciprocating compressors. An advanced simulation model developed by the authors has been used to generate data to illustrate the possibilities of the detailed thermodynamic characterization proposed. The criteria developed are useful tools for comparison purposes, to characterize compressors, and to assist designers during the optimization process.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.