Abstract
This article presents a novel approach for depth map enhancement from an RGB-D video sequence. The basic idea is to exploit the photometric information in the color sequence to resolve the inherent ambiguity of shape from shading problem. Instead of making any assumption about surface albedo or controlled object motion and lighting, we use the lighting variations introduced by casual object movement. We are effectively calculating photometric stereo from a moving object under natural illuminations. One of the key technical challenges is to establish correspondences over the entire image set. We, therefore, develop a lighting insensitive robust pixel matching technique that out-performs optical flow method in presence of lighting variations. An adaptive reference frame selection procedure is introduced to get more robust to imperfect lambertian reflections. In addition, we present an expectation-maximization framework to recover the surface normal and albedo simultaneously, without any regularization term. We have validated our method on both synthetic and real datasets to show its superior performance on both surface details recovery and intrinsic decomposition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on pattern analysis and machine intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.