Abstract

Ni-YSZ (nickel-yttrium-stabilized zirconia) is a common anode for solid oxide fuel cells (SOFCs) because of its excellent catalytic performance and electronic conductivity. It shows that the nickel anode-supported cell exhibits good cell performance in a biogas fuel of 36CH4-36CO2-20H2O-4H2-4CO. Unfortunately, natural biogas fuels often contain sulfur, so using nickel anodes is not always straightforward. This paper investigates the sulfur poisoning and the recovery of BaCe0.7Zr0.1Y0.1Yb0.1O3-δ- (BCZYYb-) (Ce, Y, and Yb codoped barium zirconate) impregnated nickel anode-supported cells operating up to 1.8 W cm-2 in the biogas. The in situ gas analysis reveals that the suppression of the reforming reactions might cause sulfur poisoning in a 4 ppm (v) H2S (hydrogen sulfide) in open circuit conditions, whereas the current degradation in working conditions could be attributed to the deactivation of reforming reactions and catalyst activity. The incidence of water-gas shift reactions is associated with the degradation rate of these two reactions. After removing the H2S, the recovery is accelerated by a steam hydrogen fuel, indicating that steam facilitates the efficient release of sulfur from nickel sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.