Abstract

A study of the effects of fluid type (shear-thinning, Newtonian, and shear-thickening) and periodic shape fluctuations of bubbles on the drag coefficient is presented for three bubble sizes (2 mm, 4 mm and 6 mm), three flow consistency indexes (μwater, 10μwater, 100μwater) and three flow behavior indexes (0.8, 1, 1.2). Computational Fluid Dynamics (CFD) simulations were performed in addition to previous measurements to obtain local data of the flow hydrodynamics. The results were used to evaluate 12 different drag coefficient estimation models, which are essential for the design of bubble columns. The Dijkhuizen et al. and Rodrigue correlations are suitable for the prediction of terminal velocity in both Newtonian and non-Newtonian liquids with high or intermediate viscosity. Finally, a modification of the correlations enables the prediction of small bubble terminal velocity also in low-viscosity liquids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.