Abstract
We present a detailed study of the performance of a trading rule that uses moving averages of past returns to predict future returns on stock indexes. Our main goal is to link performance and the stochastic process of the traded asset. Our study reports short-, medium- and long-term effects by looking at the Sharpe ratio (SR). We calculate the Sharpe ratio of our trading rule as a function of the probability distribution function of the underlying traded asset and compare it with data. We show that if the performance is mainly due to presence of autocorrelation in the returns of the traded assets, the SR as a function of the portfolio formation period (look-back) is very different from performance due to the drift (average return). The SR shows that for look-back periods of a few months the investor is more likely to tap into autocorrelation. However, for look-back larger than few months, the drift of the asset becomes progressively more important. Finally, our empirical work reports a new long-term effect, namely oscillation of the SR and proposes a non-stationary model to account for such oscillations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.