Abstract

Liquid foam, as a complex fluid, provides an observable prototype for studying a discrete fluid system. In this work, a numerical study on the settling behavior of a round particle in wet polydisperse foam has been conducted on the bubble scale. The local and nonuniform distribution of bubble pressure, as well as the localized plastic events, is presented. It shows a foam region of higher pressure in front of the settling particle due to the extrusion deformation of the bubbles applied by the particle. Additionally, the forces exerted on the particle by the disordered wet foam are measured during the sedimentation. It exhibits in particular a power-law dependence of the drag force caused by the bubble as a function of the foam quality. Moreover, sedimentation experiments are demonstrated to verify this power-law relation. The evolution of the components of drag force is demonstrated when a plastic event occurs in front of the settling particle. The result shows that both the contributions of the pulling force of foam films and the bubble pressure to the drag force decrease in that case. Likewise, the variation of both these contributions to the drag force is illustrated as well when a bubble in the wake detaches from the particle. These results assist in understanding the mesoscopic response of wet foam to a settling particle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call