Abstract

The structures of the major oligosaccharide moieties of the nicotinic acetylcholine receptor (AcChoR) protein from Torpedo californica have been reported [Nomoto, H., Takahashi, N., Nagaki, Y., Endo, S., Arata, Y. and Hayashi, K. (1986) Eur. J. Biochem. 157, 233-242] to be high-mannose types. Here we report detailed analyses of the structures of the remaining oligosaccharides in this receptor. The sialylated oligosaccharides released by glycopeptidase (almond) digestion were separated according to the number of sialic acid residues using high-performance anion-exchange chromatography with pulsed amperometric detection. After removal of sialic acid from each fraction, the resulting neutral oligosaccharides were separately pyridylaminated and were analyzed by a combination of sequential exoglycosidase digestion and HPLC, then identified on a two-dimensional sugar map. The structures of two desialylated pyridylamino-oligosaccharides were further analyzed by high-resolution proton NMR. Each oligosaccharide was composed of species containing varying numbers of sialic acids. The desialylated complex-type oligosaccharides of AcChoR consisted of ten, eight and one different biantennary, triantennary and tetraantennary oligosaccharide, respectively. The biantennary oligosaccharides were divided into two groups; oligosaccharides with fucose at the proximal N-acetylglucosamine (six varieties) and oligosaccharides without fucose (four varieties). Each group consisted of species differing in the number of terminal galactose residues. The major component of the biantennary oligosaccharides had two galactose residues at the non-reducing termini. The terminal alpha-galactose residue(s) linked to C3 of beta-galactose were found in the fucose-containing biantennary oligosaccharides (two varieties). The triantennary oligosaccharides were also divided into two groups; oligosaccharides with (four varieties) and without (four varieties) besecting N-acetylglucosamine. These groups were composed of species differing in the number of terminal galactose residues. The major component of the triantennary oligosaccharides was fully galactosylated with three galactose residues. An unusual group, Gal beta 1-3GlcNAc, was present in low levels in the triantennary oligosaccharides. In contrast, the tetraantennary oligosaccharide was composed of only one species, which is fully galactosylated with four galactose residues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.