Abstract

Abstract Harbor Branch Oceanographic Institution (HBOI) designed, built and has operated two JOHNSON-SEA-LINK (JSL) manned submersibles for the past 25 years. The JSL submersibles each incorporate a 66–68 in. (1.6764–1.7272 m) OD, 4–5.25 in. (0.1016–0.13335 m) thick acrylic two-man sphere as a Pressure Vessel for Human Occupancy (PVHO). This type of spherical acrylic sphere or submersible was first introduced in around 1970 and is known as Naval Experimental Manned Observatory (NEMO) submersibles. As the demand increases for ocean exploration to 3000 ft. (914.4 m) depth to collect samples, to study the ocean surfaces, the problem of developing cracks at the interface of these manned acrylic submersibles following few hundred dives have become a common phenomena. This has drawn considerable attentions for reinvestigation of the spherical acrylic submersible in order to overcome this crack generation problem at the interface. Therefore, a new full-scale 3-D nonlinear FEA (Finite Element Analysis) model, similar to the spherical acrylic submersible that HBOI uses for ocean exploration, has been developed for the first time in order to simulate the structural behavior at the interface and throughout the sphere, for better understanding of the mechanical behavior. Variation of the stiffness between dissimilar materials at the interface, lower nylon gasket thickness, over designed aluminum hatch are seemed to be few of the causes for higher stresses within acrylic sphere at the nylon gasket/acrylic interface. Following the basic understanding of the stresses and relative displacements at the interface and within different parts of the submersible, various models have been developed on the basis of different shapes and thickness of nylon gaskets, openings of the acrylic sphere, hatch geometry and its materials, specifically to study their effect on the overall performance of the acrylic submersible. Finally, the new model for acrylic submersible has been developed by redesigning the top aluminum hatch and hatch ring, the sphere openings at both top and bottom, as well as the nylon gasket inserts. Altogether this new design indicates a significant improvement over the existing spherical acrylic submersible by reducing the stresses at the top gasket/acrylic interface considerably. Redesigning of the bottom penetrator plate, at present, is underway. In this paper, results from numerical modeling only are reported in details. Correlation between experimental-numerical modeling results for the new model will be reported in the near future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.