Abstract

For the first time, a new type of carbon nanotube field-effect transistor (CNTFET), the dual material gate (DMG)-CNTFET, is proposed and simulated using quantum simulation that is based on self-consistent solution between two-dimensional Poisson equation and Schrödinger equation with open boundary conditions, within the nonequilibrium Green's function (NEGF) framework. The proposed structure is similar to that of the conventional coaxial CNTFET with the exception that the gate of the DMG-CNTFET consists of two laterally contacting metals with different work functions. Simulation results show DMG-CNTFET significantly decreases leakage current, drain conductance and subthreshold swing, and increases on–off current ratio and voltage gain as compared to conventional CNTFET. We demonstrate that the potential in the channel region exhibits a step function that ensures the screening of the drain potential variation by the gate near the drain resulting in suppressed short-channel effects like the drain-induced barrier lowering (DIBL) and hot-carrier effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.