Abstract

An effective radiative divertor maximizes the utilization of atomic processes to spread out the energy deposition to the divertor chamber walls and to reduce the peak heat flux. Because the mixture of neutral atoms and ions in the divertor can be optically thick to a portion of radiated power, it is necessary to accurately model the magnitude and distribution of line radiation in this complex region. To assess their importance we calculate the effects of radiation transport using CRETIN, a multi-dimensional, non-local thermodynamic equilibrium simulation code that includes the atomic kinetics and radiative transport processes necessary to model to complex environment of a radiative divertor. We also include neutral transport to model radiation from recycling neutral atoms. This paper presents a case study of a high-recycling radiative divertor with a typical large neutral pressure at the divertor plate to estimate the impact of H line radiation on the overall power balance in the divertor region with consideration for line opacities and atomic kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call