Abstract
The performances of ideal high-order thermal ghost imaging, including conventional high-order ghost imaging, background-subtracted high-order ghost imaging (BSGI), and intensity fluctuation high-order ghost imaging (IFGI), are compared in this paper. The detailed quality analyses of the three high-order ghost imaging algorithms are demonstrated. The signal-to-background ratio and contrast-to-noise ratio of the pattern-normalized high-order ghost imaging with an arbitrary-pixel object are deduced, which are in great agreement with the experimental results. Experimental results indicate that the best performance is achieved by the lowest-order BSGI or the lowest-order IFGI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.