Abstract

Abstract Eulerian–Lagrangian numerical scheme is applied for analysing packed-bed-structure constructions involving non-spherical solids, such as metallurgical cokes and ferrous ores, and the high-temperature softening characteristics of such beds. 3D scanning is applied for determining the coke and ore shapes, and a multi-sphere discrete element method is used as the functional scheme for non-spherical solid-particle motion tracking. The transient deformation behaviour of the softening ore is simulated using the advanced discrete element method, and the gas permeability characteristics exhibited by the ore shapes in the ironmaking process are discussed. Based on this model, cases with varied softening behaviour represented by the joint spring coefficient are investigated and the effect of the ore-softening behaviour on the gas permeability is evaluated. It is established that the pathway of the passing rivulet depends upon the softening-ore deformation behaviour.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call