Abstract

This work presents the development of a kinematic model of a spur gear pair and the implementation of a hydrodynamic bearing in a multidisciplinary multibody dynamics software. Both models are employed to simulate the behavior of a planetary gear set typically adopted in wind turbines. Geared transmissions have been a popular choice to transmit the rotation of the main rotor to the electrical generator in this type of turbine. Compared to other kinds of transmission, a gearbox is more compact, robust and require low maintenance over its lifetime, which is interesting, since these turbines are usually installed in remote places. The gearbox of a wind turbine is normally composed by a set of spur gears and bearings, assembled in arrangement known as epicyclic. Spur gears generally have an involute profile, which allows a constant transmission of the angular speed. This kinematic constraint between gears is defined by the angle that the surface of their teeth is in contact with. This angle is known as pressure angle and, by design, it should remain constant during operation. However, a variation of the distance between gears changes this angle, which also changes the direction of the transmission of the movement. To account for this effect, the joint is described by the projection of the absolute velocity of the contact point of each gear on the line of action, which is calculated from their position. Another important group of elements are the bearings that support gear and shafts. They can absorb part of the vibration, and compensate misalignments and teeth surface failures. Hydrodynamic bearings are widely employed in turbomachinery, due to their simplicity, long life and good damping properties, which are features that wind turbines can benefit from. Most of the hydrodynamic bearing models are two dimensional, so they have to be adapted to be implemented in a multibody dynamics software. The development of these modifications is also described in this work, so any other hydrodynamic bearing model can be easily adapted using the same procedure. Finally, a model of the wind turbine gearbox is presented, and some of the features of using the aforementioned elements inside a multibody dynamics software can be highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.