Abstract
A mechanistic model of peroxidase-catalyzed oxidation of indole-3-acetic acid (IAA) at neutral pH has been developed, characterized, and compared with experiments. The model is based on experimental facts showing that IAA is oxidized in the presence of HRP by two pathways: (i) the standard peroxidase cycle, which is accompanied by (ii) a nonenzymatic free radical chain reaction. The peroxidase cycle normally requires the addition of a hydroperoxide, whereas IAA oxidation does not. Therefore, the model includes the enzymatic peroxidase cycle which is initiated by organic hydroperoxide (ROOH) derived from autoxidation of IAA. It also includes a nonenzymatic free radical chain which utilizes oxygen, oxidizes IAA, and recycles ROOH required for the enzymatic cycle. Available experimental values of rate constants were used. Unavailable rate constants were initially estimated analytically using the steady state assumption and then optimized by computer simulation. There is a unique set of rate constants which ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The Journal of Physical Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.