Abstract

Hydrogenated doped silicon thin films deposited using RF (13.56 MHz) PECVD were studied in detail using micro Raman spectroscopy to investigate the impact of doping gas flow, film thickness, and substrate type on the film characteristics. In particular, by deconvoluting the micro Raman spectra into amorphous and crystalline components, qualitative and quantitative information such as bond angle disorder, bond length, film stress, and film crystallinity can be determined. By selecting the optimum doped silicon thin film deposition conditions, and combining our p-doped and n-doped silicon thin films in different heterojunction structures, we demonstrate both (i) an efficient field effect passivation and (ii) further improvement to c-Si/a-Si:H(i) interface defect density with observed improvement in implied open-circuit voltage VOC and minority carrier lifetimes across all injections levels of interest. In particular, the heterojunction structure (a-Si:H(p)/a-Si:H(i)/c-Si(n)/a-Si:H(i)/a-Si:H(p)) demonstrates a minority carrier lifetime of 2.4 ms at an injection level of 1015 cm-3, and a high implied open-circuit voltage of 725 mV. Simulation studies reveal a strong dependence of the interface defect density Dit on the heterojunction silicon wafer solar cell performance, affected by the deposition conditions of the overlying doped silicon thin film layers. Using our films, and a fitted Dit of 5 × 1010 cm-2·eV-1, we demonstrate that a solar cell efficiency of ~22.5% can be potentially achievable.

Highlights

  • Heterojunction with intrinsic thin layer (HIT) solar cells has proven to be a suitable candidate for cost reduction in industrial high efficiency crystalline silicon (c-Si) wafer solar cells, due to the significantly lower thermal budget requirements [1], allowing the usage of much thinner wafers (

  • By selecting the optimum doped silicon thin film deposition conditions, and combining our p-doped and n-doped silicon thin films in different heterojunction structures, we demonstrate both (i) an efficient field effect passivation and (ii) further improvement to c-Si/amorphous silicon (a-Si):H(i) interface defect density with observed improvement in implied open-circuit voltage VOC and minority carrier lifetimes across all injections levels of interest

  • The optimisation of the doped silicon thin film layers is essential to its application in heterojunction silicon wafer solar cells

Read more

Summary

Introduction

Heterojunction with intrinsic thin layer (HIT) solar cells has proven to be a suitable candidate for cost reduction in industrial high efficiency crystalline silicon (c-Si) wafer solar cells, due to the significantly lower thermal budget requirements [1], allowing the usage of much thinner wafers (

Experimental Details
Impact of Doping Gas Flow
Film Thickness Dependency
Influence of Substrate on Doped Silicon Thin Film Growth
Simulation Studies of Injection Dependent Effective Lifetime Curves
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call