Abstract

When the unprecedented environmental cracking of steel in liquid ammonia was collectively studied, its undisputable “anodic character” was taken as the signature of astress corrosion crackingmechanism, which is effectively the case in aqueous corrosion. Conversely, when the metallurgical precautions proved to be the same as in sour service, this strongly suggested ahydrogen stress crackingmechanism. In aqueous corrosion, however, this can only occur by cathodic hydrogen charging at low potential, and for 50 years, this basic contradiction could never be overcome. Actually, it occurs that the liquid ammonia solvent (NH3) is 50% richer in hydrogen than the water solvent (OH2), so that hydrogen gas can also be produced by a partial oxidisation into ½ N2 + H2. This therefore induces a theoretical possibility of an “anodic” hydrogen charging, or more exactly a protonic cathodic reaction only running at high potential on passive iron in oxygen contaminated ammonia. And once the detrimental potential is achieved through appropriate combinations of oxygen and water traces, the charging process becomes an autonomous oxidation-reduction at the steel surface NH3 → ½ N2 + H2 + (H+ + e−)steel. In Part II (Jean-Louis Crolet,Matériaux & Techniques107, 402, 2019), this new assumption will be successfully confronted to all the factual data from both field and laboratory experience.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.