Abstract

Mechanisms of the 1H spin-lattice relaxation in NH4H2PO4 were studied in detail by use of the effect of magic angle spinning on the relaxation. The acid and the ammonium protons have different relaxation times at the spinning rates higher than 10 kHz due to suppression of spin diffusion between the two kinds of protons. The intrinsic relaxation times not affected by the spin diffusion and the spin-diffusion assisted relaxation times were evaluated separately, taking into consideration temperature dependence. Both mechanisms contribute to the 1H relaxation of the acid protons comparatively. The spin-diffusion assisted relaxation mechanism was suppressed to the level lower than the experimental errors at the spinning rate of 30 kHz.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call