Abstract

The mechanics of membrane-membrane adhesion are developed for the approximation that the molecular cross-bridging forces are continuously distributed as a normal stress (force per unit area). The significance of the analysis is that the finite range of the cross-bridging forces and the microscopic contact angle are not assumed negligible. Since the cross-bridging and adhesion forces are finite range interactions, there are two membrane regions: a free zone where the membranes are not subject to attractive forces; and an adherent zone where the membranes are held together by attractive stresses. The membrane is treated as an elastic continuum. The approach is to analyze the mechanics for each zone separately and then to require continuity of the solutions at the interface between the zones. Final solution yields the membrane contour and stresses proximal to and within the contact zone as well as the microscopic contact angle at the edge of the contact zone. It is demonstrated that the classical Young equation is consistent with this model. The results show that the microscopic contact angle becomes appreciable when the strength of adhesion is large or the length of the cross-bridge is large; however, the microscopic contact angle approaches zero as the membrane elastic stiffness increases. The solution predicts the width of the contact zone over which molecular bonds are stretched. It is this boundary region where increased biochemical activity is expected. In the classical model presented here, the level of tension necessary to oppose spreading of the contact is equal to the minimal level of tension required to separate the adherent membranes. This behavior is in contrast with that derived for the case of discrete molecular cross-bridges where the possibility of different levels of tension associated with adhesion and separation is introduced. The discrete cross-bridge case is the subject of a companion paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.