Abstract

The Nucleus Pulposus (NP) and Annulus Fibrous (AF) are two primary regions of the intervertebral disc (IVD). The interface between the AF and NP, where the gradual transition in structure and type of fibers are observed, is known as the Transition Zone (TZ). Recent structural studies have shown that the TZ contains organized fibers that appear to connect the NP to the AF. However, the mechanical characteristics of the TZ are yet to be explored. The current study aimed to investigate the mechanical properties of the TZ at the anterolateral (AL) and posterolateral (PL) regions in both radial and circumferential directions of loading using ovine IVDs (N = 28). Young's and toe moduli, maximum stress, failure strain, strain at maximum stress, and toughness were calculated mechanical parameters. The findings from this study revealed that the mechanical properties of the TZ, including young's modulus (p = 0.001), failure strain (p < 0.001), strain at maximum stress (p = 0.002), toughness (p = 0.027), and toe modulus (p = 0.005), were significantly lower for the PL compared to the AL region. Maximum stress was not significantly different between the PL and AL regions (p = 0.164). We found that maximum stress (p = 0.002), failure strain (p < 0.001), and toughness (p = 0.001) were significantly different in different loading directions. No significant differences for modulus (young's; p = 0.169 and toe; p = 0.352) and strain at maximum stress (p = 0.727) were found between the radial and circumferential loading directions. Statement of significanceTo date there has not been a study that has investigated the mechanical characterization of the annulus (AF)-nucleus (NP) interface (transition zone; TZ) in the intervertebral disc (IVD), nor is it known whether the posterolateral (PL) and anterolateral (AL) regions of the TZ exhibit different mechanical properties. Accordingly, the TZ mechanical properties have been rarely used in the development of computational IVD models and relevant tissue-engineered scaffolds. The current research reported the mechanical properties of the TZ region and revealed that its mechanical properties were significantly lower for the PL compared to the AL region. These new findings enhance our knowledge about the nature of AF-NP integration and may help to develop more realistic tissue-engineered or computational IVD models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call