Abstract

A kinetic model of steam gasification of Ca-loaded lignite char has been proposed through the analysis of 41 sets of kinetic data obtained by thermogravimetry with different combinations of Ca concentration, temperature, and partial pressures of hydrogen and steam. The model quantitatively describes the change with time of the char conversion over its entire range by assuming progress of non-catalytic gasification and two different types of Ca-catalyzed gasification (Type-1 and Type-2) in parallel, all of which obey Langmuir–Hinshelwood mechanisms. The model attributes the catalysts for Type-1 and Type-2 to nanosized Ca-based particles and Ca species dispersed in an atomic scale, respectively. The initial concentration of Type-2 catalyst is saturated at a total Ca concentration over 1.0 wt %, while that of Type-1 increased in a linear manner with the total Ca concentration. The catalysis of Type-1 catalyst is more significant but diminished more quickly than that of the Type-2 one. Consequently, there was an optimum initial Ca concentration in the char around 2.0 wt % in terms of the time required for 99% char conversion. This trend is clearly different from that predicted from previous models that simply assumed loading saturation levels (LSLs). The kinetic model predicts characteristics of the steam gasification of the Ca-loaded char in an atmospheric bubbling fluidized bed at 800 °C. The characteristic time for the char gasification, which is given by the amount of in-bed char at steady state per feeding rate of the char (mc/Fc), is reduced by virtue of Ca by a factor of 7–8.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.