Abstract
Radiative opacity and emissivity of tin plasmas at average ionization degree of about 10 was investigated in detail by using a fully relativistic detailed level accounting approach, in which main physical effects on the opacity were carefully taken into account. Among these physical effects, configuration interaction, in particular core-valence electron correlations, plays an important role on the determination of accurate atomic data required in the calculation of opacity. It results in a strong narrowing of lines from all transition arrays and strong absorption is located in a narrow wavelength region of 12.5-14 nm for Sn plasmas. Using a complete accurate atomic data, we investigated the opacity of Sn plasmas at a variety of physical condition. Among the respective ions of Xe6+-Xe15+ , Xe10+ has the largest absorption cross section at 13.5 nm, while the favorable physical condition for maximal absorption at 13.5 nm do not mean that Xe10+ has the largest fraction. Comparison with other theoretical results showed that a complete set of consistent accurate atomic data, which lacks very much, is essential to predict accurate opacity. Our atomic model is useful and can be applied to interpret opacity experiments. Further benchmark experiments are urgently needed to clarify the physical effects on the opacity of Sn plasmas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.