Abstract

Objectives: One of the fields, where additive manufacturing has numerous applications, is biomedical engineering. 3D printing is preferred over traditional manufacturing methodologies, mostly while developing subject-specific implants and medical devices. This study aims to provide a process flow detailing all the stages starting from the acquisition of radiological images from different imaging modalities; such as computed tomography (CT) and magnetic resonance imaging (MRI) to the printing of the bone morphology and finite element analysis; including the validation process.Materials & Methods: First, the CT scan of a lower abdomen area of a patient was converted into a 3D image using interactive medical imaging control system software. The segmentation process was applied to isolate the femoral head from the soft tissue and the pelvic bone. After the roughness errors and the gaps in the segments were removed using the 3Matic software, the file was converted to stereolithography (STL) file format to transfer to the 3D printer. The printing process was carried out via commercial powder-based Selective Laser Sintering (SLS) printer. The subject-specific femoral head model was formed in 3D. The Finite Element Analysis (FEA) of the femoral head was performed using a commercial FE software package.Results: The results show that experimental analysis and the CT scan-based FEA were compatible both for the stress distributions and the strain values as predicted by the models (R2=0.99). The deviation was calculated as approximately 12% between the experimental results and the Finite Element (FE) results. In addition, it was observed that the SLS technique produced useful results for modeling biomedical tissues with about 24x faster prototyping time.Conclusion: The prescribed process flow could be utilized in clinical settings for the pre-planning of the surgeries (≈428 minutes for femoral head) and also as an educational tool in the biomedical engineering field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.