Abstract

This paper experimentally investigates the validity of self-similarity of strong shock reflection phenomena in a shock tube. The models used for the shock-tube experiment are ordinary wedges with various reflecting wedge angles. The triple-point trajectory is approximately a straight line through the wedge apex for each reflecting wedge. However, a detailed measurement of the angle made by the incident and reflected shocks shows that the wave angle varies as the incident shock proceeds. This means that the shock reflection configuration deviates from self-similarity. The most remarkable phenomenon is the dynamic transition from regular to Mach reflection during shock propagation, where the validity of self-similarity breaks down. The flow-field behind the Mach stem is subsonic with respect to the triple point, so the condition on the solid boundary can catch up with the triple point and affect the flow around it. We also explain why the discrepancy between theory and experiment has gone unnoticed for stro...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.