Abstract

SARS-CoV-2 main protease (Mpro/3CLpro) is a crucial target for therapeutics, which is responsible for viral polyprotein cleavage and plays a vital role in virus replication and survival. Recent studies suggest that 2-phenylbenzisoselenazol-3(2H)-one (ebselen) is a potent covalent inhibitor of Mpro, which affects its enzymatic activity and virus survival. Herein, we synthesized various ebselen derivatives to understand the mechanism of Mpro inhibition by ebselen. Using ebselen derivatives, we characterized the detailed interaction mechanism with Mpro. We discovered that modification of the parent ebselen inhibitor with an electron-withdrawing group (NO2) increases the inhibition efficacy by 2-fold. We also solved the structure of an Mpro complex with an ebselen derivative showing the mechanism of inhibition by blocking the catalytic Cys145 of Mpro. Using a combination of crystal structures and LC-MS data, we showed that Mpro hydrolyzes the new ebselen derivative and leaves behind selenium (Se) bound with Cys145 of the catalytic dyad of Mpro. We also described the binding profile of ebselen-based inhibitors using molecular modeling predictions supported by binding and inhibition assays. Furthermore, we have also solved the crystal structure of catalytically inactive mutant H41N-Mpro, which represents the inactive state of the protein where the substrate binding pocket is blocked. The inhibited structure of H41N-Mpro shows gatekeeper residues in the substrate binding pocket responsible for blocking the substrate binding; mutation of these gatekeeper residues leads to hyperactive Mpro.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call