Abstract

A five times scale model of an engine brush seal has been manufactured. The bristle stiffness and pressure were chosen to satisfy close similarity of the relevant non-dimensional parameters, and the choice of parameters is described. The comparison of flow characteristics for the model seal and an engine seal confirmed the non-dimensional similarity. Detailed pressure measurements were performed within the bristle pack by employing hollow bristles. This novel measurement allowed insight to be obtained into the operation of both clearance and interference seals. In particular, the measured pressure variation in the region of the bristle tips was significant. The deflection of the bristles was determined by comparing the bristle tip pressures with the static pressures along the shaft. Hence the compaction of the pack in this region was found directly. A numerical modeling of brush seals employing anisotropic flow resistance has been developed. Predictions were compared with the measured pressure distributions within the pack. This enabled sensible selection of the pack resistance distribution to be made. Although uniform anisotropic resistance throughout the pack gave reasonable flow rate characteristics, the pressure distribution was not reproduced. A variation of resistance coefficient consistent with the observed compaction was required to give a solution comparable with the experiments. [S0742-4795(00)01703-8]

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call