Abstract
Objective. Periodic respiratory motion and inter-fraction variations are sources of geometric uncertainty in stereotactic body radiation therapy (SBRT) of pulmonary lesions. This study extensively evaluates and validates the separate and combined dosimetric effect of both factors using 4D-CT and daily 4D-cone beam CT (CBCT) dose accumulation scenarios. Approach. A first cohort of twenty early stage or metastatic disease lung cancer patients were retrospectively selected to evaluate each scenario. The planned-dose (3DRef) was optimized on a 3D mid-position CT. To estimate the dosimetric impact of respiratory motion (4DRef), inter-fractional variations (3DAcc) and the combined effect of both factors (4DAcc), three dose accumulation scenarios based on 4D-CT, daily mid-cone beam CT (CBCT) position and 4D-CBCT were implemented via CT-CT/CT-CBCT deformable image registration (DIR) techniques. Each scenario was compared to 3DRef. A separate cohort of ten lung SBRT patients was selected to validate DIR techniques. The distance discordance metric (DDM) was implemented per voxel and per patient for tumor and organs at risk (OARs), and the dosimetric impact for CT-CBCT DIR geometric errors was calculated. Main results. Median and interquartile range (IQR) of the dose difference per voxel were 0.05/2.69 Gy and −0.12/2.68 Gy for and For the IQR was considerably smaller −0.15/0.78 Gy. These findings were confirmed by dose volume histogram parameters calculated in tumor and OARs. For CT-CT/CT-CBCT DIR validation, DDM (95th percentile) was highest for heart (6.26 mm)/spinal cord (8.00 mm), and below 3 mm for tumor and the rest of OARs. The dosimetric impact of CT-CBCT DIR errors was below 2 Gy for tumor and OARs. Significance. The dosimetric impact of inter-fraction variations were shown to dominate those of periodic respiration in SBRT for pulmonary lesions. Therefore, treatment evaluation and dose-effect studies would benefit more from dose accumulation focusing on day-to-day changes then those that focus on respiratory motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.