Abstract

AbstractA series of tests including seven different materials and products have been conducted using a controlled equivalence ratio tube furnace test method. The main objective of the tests was to determine yields of fire‐generated products at defined combustion conditions.The tube furnace test method was set up and run in close agreement with that described in BS 7990:2003. At the time of experimental work the new tube furnace method was in the process of becoming an international standard. It was thus of interest to make an assessment of the capability of the method for determining production yields of important toxic fire products from different types of materials and products.The test series included solid wood, flexible polyurethane (PUR), fire‐retarded rigid PUR, a polyvinyl chloride (PVC) carpet, a high‐performance data cable with fluorine‐containing polymer matrix, a PVC‐based cable sheathing material and fire‐retarded polyethylene cable insulation material. Duplicate tests were generally conducted at both well‐ventilated and vitiated combustion conditions with these materials.The smoke gases produced from the combustion were quantified for inorganic gases by FTIR technique in all tests. A more detailed analysis of the smoke gases was conducted for some of the materials. This extended analysis contained a detailed assessment of organic compounds including, e.g. volatile organic compounds, isocyanates, aldehydes and polycyclic aromatic hydrocarbons. The analysis further included measurement of the size distribution of fire‐generated particles for some of the materials.The quantification of toxic inorganic gases produced by combustion at both well‐ventilated and vitiated conditions was successful regarding repeatability and stability. Typical yields for the two fire stages investigated were determined for a wide range of materials and products. The detailed analysis of organic compounds further corroborated that the new tube furnace method can replicate defined combustion conditions. Copyright © 2007 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call