Abstract

XRISM is an X-ray astronomical mission by the JAXA, NASA, ESA and other international participants, that is planned for launch in 2022 (Japanese fiscal year), to quickly restore high-resolution X-ray spectroscopy of astrophysical objects. To enhance the scientific outputs of the mission, the Science Operations Team (SOT) is structured independently from the instrument teams and the Mission Operations Team. The responsibilities of the SOT are divided into four categories: 1) guest observer program and data distributions, 2) distribution of analysis software and the calibration database, 3) guest observer support activities, and 4) performance verification and optimization activities. As the first step, lessons on the science operations learned from past Japanese X-ray missions are reviewed, and 15 kinds of lessons are identified. Among them, a) the importance of early preparation of the operations from the ground stage, b) construction of an independent team for science operations separate from the instrument development, and c) operations with well-defined duties by appointed members are recognized as key lessons. Then, the team structure and the task division between the mission and science operations are defined; the tasks are shared among Japan, US, and Europe and are performed by three centers, the SOC, SDC, and ESAC, respectively. The SOC is designed to perform tasks close to the spacecraft operations, such as spacecraft planning, quick-look health checks, pre-pipeline processing, etc., and the SDC covers tasks regarding data calibration processing, maintenance of analysis tools, etc. The data-archive and user-support activities are covered both by the SOC and SDC. Finally, the science-operations tasks and tools are defined and prepared before launch.

Highlights

  • The X-Ray Imaging and Spectroscopy Mission (XRISM)[1] is an x-ray astronomical mission led by the Japan Aerospace Exploration Agency (JAXA) and National Aeronautics and Space Administration (NASA), in collaboration with the European Space Agency (ESA) and other international partners, that is planned for launch in 2022 (Japanese fiscal year) to restore high-resolution x-ray spectroscopy after the loss of the Hitomi satellite.[2]

  • This paper aims to describe the details of the development of the XRISM science operations from the concept study to the detailed plans as well as give detailed descriptions of the preparations for the operation based on the SPIE Proceeding in 2020.6 Note that such descriptions on the detail of design of the science operations may have sensitive topics for the project but the paper aims to describe those as much as possible avoiding confidential technical ideas and political issues for the XRISM project and agencies, because the authors believe that this knowledge may help the design of science operations in near-future high-energy missions

  • The activities required of science operations can be divided into the following four categories: SO1: guest observer (GO) program and data distribution; SO2: distribution of analysis software and calibration database; SO3: GO supporting activities; SO4: performance verification and optimization (PVO) activities

Read more

Summary

Introduction

The X-Ray Imaging and Spectroscopy Mission (XRISM)[1] is an x-ray astronomical mission led by the Japan Aerospace Exploration Agency (JAXA) and National Aeronautics and Space Administration (NASA), in collaboration with the European Space Agency (ESA) and other international partners, that is planned for launch in 2022 (Japanese fiscal year) to restore high-resolution x-ray spectroscopy after the loss of the Hitomi satellite.[2] The XRISM mission has four scientific objectives:[3] (1) understanding the formation of the structure of the universe and evolution of clusters of galaxies by measuring turbulent and Doppler velocities at the 300-km/s level in spatially resolved spectroscopy of clusters of galaxies, (2) understanding the circulation history of baryonic matter in the universe from high-resolution spectroscopy of phenomena such as supernova remnants and supernovae, (3) understanding the transport and circulation of energy in the universe by observing feedback from active galactic nuclei or outflow from super-massive black holes via high-resolution spectroscopy, and (4) new science based on unprecedented high-resolution x-ray spectroscopy, such as detailed diagnostics of collisional ionization and photoionized plasma.

Objectives
Methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call