Abstract

The Ailaoshan Orogenic Belt (AOB), located at the southeastern boundary of the Tibetan Plateau, is an ideal place for investigating the mechanisms of lateral growth of Tibet. Using the data recorded by a dense seismic array across the Ailaoshan belt, we investigate the detailed lateral variations of crustal anisotropy on the basis of Pms phase of receiver functions. Remarkable crustal anisotropy is observed throughout this study region with a mean delay time of 0.33 ± 0.19 s, indicating the anisotropy primarily originates in the middle-lower crust. The fast directions beneath the AOB including the Ailaoshan-Red River shear zone (ARRSZ) and its western low-grade metamorphic unit generally align with the NW-SE strike of ARRSZ. The weak anisotropy in the South China Block (SCB) argues that the block is relatively stable, with limited internal deformation. Meanwhile, the anisotropy beneath the western boundary of the SCB is strong, and the N-S oriented fast direction is influenced by both the crustal stress and Xiaojiang Fault. Combining the high Vp/Vs and significant lateral variations of crustal anisotropy parameters, we suggest that the strike-slip motion along the ARRSZ induces the partial melting and pronounced anisotropy in the middle-lower crust of AOB, without the presence of crustal flow. The differences between crustal and mantle anisotropy indicate crust-mantle decoupling deformation of the AOB, supporting the block extrusion model occurring only in the crustal scale as the primary deformation pattern.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.